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We describe a form of self-consistent particle-in-cell plasma simulation which is applicable 
to strongly inhomogeneous systems involving a wide range of space and time scales. In this 
multi-scale method, the plasma particles in each region of phase space are advanced using a 
step size appropriate to that region, as determined by accuracy considerations. While the 
necessity of a self-consistent field may seem to require processing of all particles in synchrony, 
the method overcomes that difkulty. This is accomplished by means of implicit PIC techni- 
ques, interpolating grid quantities in time to obtain the source contributions from groups of 
particles not advanced during the current step. For suitable problems (those in which fine 
space-time resolution is needed only in isolated spatial regions), most of the particles are not 
processed on any given step. Thus, major gains in efficiency over conventional simulations 
may be realized. In this paper we describe the method, and the beginnings of our investiga- 
tions into its feasibility. e 1991 Academic Press. Inc. 

1. INTRODUCTION 

A long-standing goal in plasma simulation has been a method which could treat 
both detailed kinetic and smooth large-scale physics in an efficient and natural way. 
Until recently, particle simulations were applied almast exclusively to problems of 
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“microscopic” physics, where only a small part of the plasma was modeled. With 
the advent of implicit particle simulation techniques [l-5], one can now treat long 
systems of many thousands of Debye lengths and follow them for many thousands 
of plasma oscillation times. However, the price paid for this capability is a restric- 
tion on the allowed spatial resolution (an accuracy constraint). Thus, in current 
particle codes (e.g., TESS [6] or AVANT1 [7]) a small timestep is still necessary 
whenever the system incorporates a physically important small spatial or temporal 
scale anywhere within its domain. 

We have developed a new multi-scale particle-in-cell plasma simulation technique 
which relaxes these restrictions and is suitable for strongly inhomogeneous 
problems involving a wide range of space and time scales. The plasma in any part 
of phase space is advanced on its own natural scales. Of course, it seems only 
natural to advance each particle with its own, independent, series of timesteps. The 
major difficulty in doing this has been the necessity of processing the particles in 
synchrony due to the requirement of a self-consistent field. We have developed and 
are testing an algorithm [8,9] which overcomes this difficulty. The code advances 
the particles in blocks, each with an associated timestep At which equals the base 
(smallest) timestep times a power of two. Direct-implicit techniques are used to 
produce charge density data many base-steps ahead of the current one, for blocks 
which are infrequently processed. Interpolations in time yield source arrays a single 
step in advance. For each region of phase space, the nominal timestep (and possibly 
the mesh spacing) is independently specified; it can either be fixed, or chosen in an 
adaptive manner. A major improvement in economy comes about because the 
majority of the particles are not processed during any given step; for suitable 
problems this gain may be an order of magnitude or more. 

There are many areas of plasma physics where such a capability would be highly 
desirable. In particular, bounded plasmas are in need of and well suited to multi- 
scale techniques (indeed, they motivated this invention). In many cases, details of 
both sheaths (a few Debye lengths) and the bulk plasmas they bound (many 
thousands of Debye lengths) are desired. Other potential applications include colli- 
sionless shocks, double layers, and a wide variety of astrophysical problems. Even 
in a relatively tractable problem such as the bump-on-tail instability, significant 
gains might be realized by pushing only those particles in or near the bump with 
a small timestep; the more numerous bulk particles would be advanced less 
frequently. Similar methods might prove applicable to problems of gravitating 
systems and to particle-in-cell fluid modeling. 

We have implemented the algorithm in a testbed code (MIST). Our first tests, 
described below, exercise the method without allowing particle step sizes to change 
with time; such “redistribution” of particles among blocks has been implemented 
and tested successfully, but will be described in a future paper. 

In Section 2 below, we describe the method; in Section 3 we present the results 
of tests which serve to illustrate some of its properties; and in Section 4 we describe 
how the method would apply to the problem of a macroscopic plasma bounded by 
an electrostatic sheath. Concluding remarks appear in Section 5. 
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2. MULTI-SCALE METHOD 

We motivate the method by considering briefly the sheath problem described 
more thoroughly in Section 4 below. In that problem, particles in the sheath are 
necessarily advanced with small timesteps-they are thus kept in the smallest 
timestep “group” which is pushed every time the field solution is performed. In con- 
trast, particles in the bulk plasma need be advanced only infrequently. However, 
accuracy and smoothness of the simulation is enhanced by not processing all par- 
ticles in this least-frequently-advanced group at the same time-hence, the group is 
divided into subgroups (“blocks”) each of which is actively processed on different 
timesteps. The multi-scale scheme offers real advantages over conventional explicit 
and implicit methods for inhomogeneous problems such as this one. When the bulk 
region is large enough it is completely impractical to use an explicit method; an 
implicit method would fail to capture the internal sheath dynamics. The reader is 
referred to Section 4 for further discussion. We now describe the algorithm in detail. 

Each group of particles (call them G,) is pushed every 2” timesteps using the 
time increment At,,, = 2” dt, where m = 0, 1, 2, 3, . . . . mmaxr and 6t is the smallest time 
increment. To avoid processing all the particles of a given group at once, we define 
subgroups of G, called blocks, B!,,. Given a group G,, there are 2” blocks Bi, 
where I= 0, 1,2, . . . . (2” - 1). Each block in a group is moved on a different 
timestep. We move a block Bf, on timestep n (with t = n dt) when: 

(n) mod (2”) = I. (1) 

The model is shown in Fig. 1. Each species of particles has its set of associated 
blocks. 

Timestep sizes which differ from the smallest step size by powers of two are used 
because, as can be seen in the algorithm of Section 2.2, it is particularly convenient 
to double or halve the step size of a particle; see especially steps (lh) and (li). 
Furthermore, an “exponential” dependence of the step size upon the group number 

Group Step size Block When pushed 

GO At0 = 6t B,O every step 

GI At, = 26t Bf even steps 

B: odd steps 

G2 At2 = 46t B,O ifnmod4=0 

B: ifnmod4=1 

B,2 ifnmod4=2 

B23 ifnmod4=3 

FIG. 1. Example of when blocks are moved for 3 AI groups. 
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allows a wide range of step sizes to be achieved using a small number of groups. 
Other schemes are likely to be possible, and perhaps will be preferable in some 
cases, but we have not explored them. It is probably unwise to alter a particle’s step 
size by too large a factor, since the small truncation errors associated with a small 
step might easily be rendered meaningless by large errors from an adjoining step. 

Particles are advanced only every 2” (m > 1) timesteps when they reside in a 
region of phase space where there are no large amplitude short wavelength fields 
(kv At,,, and atrap At,,, are moderate); here k is a characteristic inverse scale length, 
v a characteristic particle velocity, and strap the oscillation frequency (ka)‘12, where 
a is the electric acceleration. In such a region we may also employ a coarse mesh. 
The large timestep used in such a region may help damp out the effects of “finite 
grid instability.” This is a numerical instability which can arise as a result of the 
finite mesh spacing when the cell size is significantly larger than the Debye length 
[lOI. 

The direct-implicit field equation is 

V.(l +x(x))V$=B(x) (2) 

with the “effective susceptibility” 

x(x)=$~p,(x) At2 
s 5 

(3) 

and p(x) the “free streaming” charge density obtained by moving particles to the 
advanced time level but omitting any effect of the electric field at that level. The 
sum is over all species. The field equation is solved over the entire domain every 
step. In this way, the deposition of charge in a direct-implicit code occurs implicitly, 
one step earlier than in an explicit code. 

In the multiscale algorithm, we allow a block to deposit its information 2” time 
levels ahead of the current step; this information is then interpolated backward in 
time to yield the data needed to produce the field a single time level ahead. 
“Future” p data for a block (extrapolated 2” levels ahead) are generated on steps 
during which the block is active; before this is done, the block’s “old” (that is, 
existing) p data (which is by now associated with the current time level) are first 
saved in a separate array. Thus, each block’s b is described by two mesh-sized 
arrays; these data are always available for interpolation, even on steps during which 
the block is inactive. This procedure makes it unnecessary to calculate p(x) from 
the particles every step. 

As particles are moved about in phase space, it is necessary to change their 

I I -- 
At=a6t At=46t At=26t At=& 

FIG. 2. Example of what a typical spatial grid might look like. Approximate spatial location of df 
groups are shown for the electrons. 
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Time level n: 3 4 5 6 7 8 9 10 11 

B,O Ly-L~;‘b 

B: 
r----1 

x,v L,-,, o----b 

B23 / 
r--------7 

x,v 5,x *----------‘b 

FIG. 3. Example of particle advance to n = 7 and interpolation of p and x at n = 8. Only blocks that 
are advanced at n = 7 are shown. 

timesteps (move them from block to block). We allow changes in AZ by no more 
than a factor of 2, no matter where the particle is; we can change At again on the 
next step if necessary. The programming logic is simpler this way. In order to 
facilitate doubling or halving the step size “between steps,” we employ a variant of 
the “dl” implicit particle advance [ 1 l] with all key quantities defined at integral 
(not staggered) time levels. This allows us to preserve second-order accuracy in 
time. A typical spatial grid might be that shown in Fig. 2. 

Figure 3 shows the active blocks that are processed at time level n = 7. The 
dashed “arches” at the right represent the “pre-push” needed to obtain p and x, as 
described above. The lower dashed lines (for blocks B: and B:) denote interpola- 
tion in time of fi and x. The other blocks were advanced on earlier steps, and we 
need only interpolate their contributions to p and x back to n = 8 before the field 
solve, as shown in Fig. 4. 

After the active particles have been pushed to n = 7 (and before their contribu- 

Time level n: 3 4 5 6 7 8 9 10 11 

------e--e- 
BZO 4 Lx ‘b 

B: 
/- -------- 

4 p”,x ,--a 

?---.‘-----, 

B,2 4 ;,x o- ------ &, 

FIG. 4. Example of interpolation of jj and x for blocks not moved at n = 7. 
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tions to fi have been accumulated), they are moved into new blocks if their 
(x, v) so dictate. The redistribution moves particles only into blocks that will 
be “pre-pushed” on the current step. Then the pre-push to n = 8 (or beyond) is 
performed. Finally, p and x are interpolated to n = 8 (for all blocks, both active and 
inactive, pre-pushed beyond S), and the field equation is solved for 4 at n = 8. 

It is unnecessary to save a x for each block, because the total x(x) is constructed 
from all of the (old and new) p’s at each step. A factor of At* enters into the 
calculation of the contribution to x from a block BL; assuming linear interpolation 
of 6, it is correct to use the At,,, associated with that block (roughly, it is also 
associated with a region of phase space or a grid spacing). Hence, the At*‘s that go 
into the expression for x are not the same for all blocks. This can be understood 
physically in the following way: the future field acts on infrequently-advanced par- 
ticles over a longer time, and x takes this into account, since it represents the action 
of that future field back upon itself via the particles. 

The algorithm subsumes explicit electron subcycling schemes; ions would nor- 
mally be processed only at the longest interval. However, initialization is simplified 
if all ions and electrons are placed in their Bi blocks at the start, to avoid referencing 
a negative time-level. During the first few steps some delay in “promoting” particles 
into higher-number blocks must be imposed, so that the blocks within a group are 
uniformly populated. After a few steps, the small At,,, ion groups will be empty. 

2.1. The Revised dl Particle-Advance Scheme 

We seek a variant of the dl scheme with x, v defined at the same (integer) time 
level, to facilitate changing the timestep size. We start with the scheme as it is 
usually written. The “final push” is: 

a,-1 =- ; ri.*+3(P,) 
{ 1 

x, = R, + ; At* 2 E, (2,). 
m 

(4) 

(6) 

Then, the “pre-push” is: 

a,+,,,=~,-,,,+~Atii,.-, (7) 

x,+1 =x,+AtC,,,,,. (8) 

We move the computation of %,,+ I to the beginning of the “final push,” where it 
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becomes z?,, = .x,- , + AC,, ~ ,,,2. We then relabel 6, + 1,2, calling it u, (it is formally 
centered at time level n, so this is a notational improvement). Then, we write 

v,=~,,~,.‘~++dtG~~, 

=u,,~,+tAt{a,~,+E,(I,)} (9) 

to yield an advance from one integer level to the next. 

2.2. The Algorithm, in Detail 

We enter a timestep with the particle data x, ~ i, v, _, , and 5, _ *, and with E, 
on the mesh. Strictly speaking, we should write a trivial generalization of the 
following, with incoming positions x defined at time level n - 2”, etc., but we write 
the algorithm as if m were zero for clarity, so At = 6t. In the following, time-sub- 
scripted quantities are stored in the particle arrays, while unsubscripted quantities 
are used only as scratch within the particle loops. The algorithm for one timestep 
is: 

1. First we begin the “final push” loop over species, blocks and particles (At 
is really that of the current block; At = At,): 

(a) 
(b) 
(cl 
(d) 
(e) 
(0 
(iid 

(h) 

6) 

ti) 

f=x,~,+Atu,_, 
a old = &I - 2 

a = (q/m) E,,(f) (interpolation of field from mesh) 

ii,-l = ${a+&,} 
v,=v,-1 + $At{ti,- I + a} 
x, = 1+ $At*a 
Enforce particle boundary conditions; reflect or absorb, or shift by one 
period if using a periodic model. 
If the particle has moved to a point in phase space where 
At(x,, u,,) < At/r, set ii,- i = 4 {a + a,- i > and set the “new block” flag 
to “true.” Here we have used either r = 4 or r = 2; the latter choice 
provides a useful “hysteresis” and prevents particles from changing step 
size back and forth unnecessarily in certain cases. 
If the particle has moved to a point in phase space where 
At(x,,u,)>rAt,setti,-,=ti,,, and set the “new block” flag to “true.” 
If the particle has been flagged to change blocks then, using 2, subtract 
the particle’s contribution from the p array associated with the current 
block at time level n, and add the particle’s contribution to p of the 
new block. 

2. At this point we exit the “final push” loop. For each active block, copy 3 
into Pold, then set p to zero. 
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3. We now treat special cases. 

(a) Sort flagged particles into new blocks. 
(b) Inject any new particles by adding them to the appropriate blocks. 

4. At this point we begin the “pre-push loop” over species, blocks and 
particles: 

(a) Z=x,+dtv,. 
(b) Using 2, compute fi array associated with the current block at time 

level n + 1. 

5. At this point we exit the “pre-push” loop. 
6. We then calculate the field quantities: 

(a) Interpolate p and x from all necessary blocks to time level n + 1. 
(b) Perform the field-solve to obtain E,, 1. 

Steps 1 through 6 are performed at each timestep. The particle advance scheme is 
formally second-order accurate and would be “time centered” (reversible) were it 
not for the damping built into the dl mover. This is described in somewhat more 
detail in the context of a generalization [13] of the dl advance; the reference 
discusses varying both the timestep size and a damping parameter. Our latest 
multi-scale work actually employs the generalized dl scheme of the reference, but 
typically remains in the dl limit of that algorithm. Centering of the electrostatic 
lield is a result of the interpolations by which the source term is computed. 

3. TEST RESULTS 

Here we describe several simple tests using MIST. The first test (run # 1) 
involves a translating slab of test particle electrons advanced every eighth step. 
There were 100 grid cells and 8192 infinitesimally charged electrons, all given initial 
velocity 0.005. Figure 5 shows the free streaming charge density of the slab at times 
t = 32.0 and t = 33.0. At the latter time, a “ledge” effect appears because this density 
is obtained by interpolation of quantities known at times 32.0 and 40.0, and the 
slab has moved a distance of 0.04 (four cells) during that longer interval; the charge 
density at t = 32.0 is 5 x 1O-21 in the cell at x = 42. For this test particle case, the 
free streaming density is the same as the self consistent density, since there are no 
forces on the particles. Figure 6 shows the electrostatic potential in one selected cell, 
and the field energy, as functions of time. The potential varies linearly in time 
between those time levels where it is calculated using true (not interpolated) 
particle data. A characteristic “scalloping” of the field energy is evident, due to the 
smoothing of the charge density inherent in the interpolation. 
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FIG. 5. Test particle electron charge density for translating slab run # 1 at (a) time I = 32.0 and (b) 
t= 33.0. 

In one class of tests, we considered the free expansion of a plasma into vacuum 
[Z]. In run #2, we set At to 8.0, t,,, to 4000, and loaded all particles into the base 
group so that they were advanced every step. We then made run #3 with a base 
At of 2.0, but with all particles in blocks B(: so that they were advanced every fourth 
step; in this run, the interpolated values of j5, x, and E were not used to advance 
the particles at all. The object of this pair of tests was to verify that the two runs 
behaved identically. It was found that the answers agreed to all bits, as expected 
because the algebraic steps were exactly the same. 

A similar but shorter run ( #4) was done as a test of interpolation smoothness. 
There were 512 grid cells, and 8192 particles of each species. The electron plasma 

Time Time 

FIG. 6. Time histories of (a) the electrostatic potential in cell number 75 and (b) the field energy for 
translating slab test run # 1. 
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FIG. 7. A snapshot of the instantaneous electric field at the end of free expansion run #4. 
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FIG. 8. Time histories of (a) electron kinetic, (h) field, and (c) total energies for free expansion run #4. 
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FIG. 9. Snapshots of the ion charge density at time f = 15,000 for (a) free expansion run # 5, without 
subcycling, and (b) run #6, with ion advance every eighth step. 

frequency was 1.0, and the mass ratio was 900:l.The system length was 1.0, the 
electron thermal velocity was 9.8 x 10P5, and the ion thermal velocity was 
1.03 x lO-‘j. Again, the interpolated quantities are not used to move the particles, 
but they can be used as a diagnostic. We set At = 1.0, rmax = 64, and advanced each 
particle on every eighth step (there were eight “particle steps”). The instantaneous 
electric field at the end of the run is shown in Fig. 7; the ambipolar effect is clearly 
evident at the slab edge. Figure 8 shows time histories of the electron kinetic, field, 
and total energies. The kinetic energy clearly changes only every eighth step, since 
particles are untouched during the interim. The field (and, hence, the total) energies 
do change on intermediate steps, because they involve interpolated quantities. The 
field energy exhibits scalloping. 

As a test of electron subcycling, we made free expansion run #5 with At = 8, 
t max = 20,000, and compared it with run # 6 where the ions were advanced every 
eighth step (Ati = 64). Figure 9 shows the ion charge density three quarters of the 
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FIG. 10. Ion phase space at time z= 15,000 for (a) run #5 and (b) run #6. 
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FIG. 11. Time histories of the total energy for (a) run #5 and (b) run #6. 

way through these runs (it has been smoothed slightly by time averaging over 100 
steps). Figure 10 shows snapshots of the ion phase space at this same time. 
Figure 11 shows time histories of the total energy. The good agreement between 
these two runs demonstrates that stable electron subcycling is possible. Note, 
however, the poor energy conservation for these parameters, which is most severe 
at the beginning of the run when the fields are large and the gradient lengths short. 
These implicit (not fully multi-scale) simulations discard the energy associated with 
motions which occur on short timescales. The free expansion problem may thus be 
a good test case for the full multi-scale algorithm (with particle redistribution). 

4. APPLICABILITY 

A problem of current interest is the simulation of an electrostatic sheath. It was 
found desirable to employ on the order of 500 particles per Debye length in order 
to keep the noise associated with the finite particle number to a reasonable level 
[12]. If one hopes to model a macroscopic plasma system (overall lengths cen- 
timeters to meters) which also includes a sheath region (scale lengths microns 
to millimeters), this requirement on N, is clearly computationally prohibitive. 
However, we note two simplifying aspects of the problem, namely: (1) the very few 
electrons with speeds greater than about three times the thermal speed u, charge the 
wall and are the ones which need be treated accurately; (2) far away (a few 2,) 
from the wall, fine resolution in space and time may not be necessary, so we may 
use “smoother” physics in the central plasma region. We should note that conven- 
tional sheath simulations have typically treated the fast particles poorly, with 
u, At > Ax. 

A simple calculation shows the potential eflicacy of our scheme. Assume the 
system is 10,000 Debye lengths in extent, roughly uniform in density, and contains 
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a “sheath” region of 25 Debye lengths which is to be resolved in space and time. 
For simplicity let us base our particle step-size solely upon location and not at all 
upon velocity. If we require 500 particles of each species per Debye length, the total 
number of electrons is N, = 5000,000. Now assume that we want a small timestep 
in the sheath region, uPu dt = 0.1, but can tolerate oPp At z 100 in the bulk plasma. 
Hence, we choose mmax = 10, so that the ratio dfrnax/dtmin = 1024. The block which 
must be pushed every step contains 25N,/lO,OOO = N,/400 electrons. Assume that 
the transition timestep sizes are equally populated (to make a gradual transition 
region that will not spuriously reflect any plasma waves generated by the sheath); 
then NC/400 particles are pushed every second step, NC/400 every fourth, etc. The 
blocks which are pushed every 512 steps will contain about 24 particles each, 
enough for vectorization purposes. Thus, neglecting the particles which are pushed 
every 1024 steps, the number pushed on a step is 

{ $ + + + . . . ) NJ400 x NJ200. (10) 

At the largest interval, we have N, - lON,/400 z N, electrons being pushed, but 
only every 1024th step, so the number pushed on one step is NJ1024. Thus, even 
with 10,000 Debye lengths, the region near the sheath dominates the cost. If we 
push ions only every 1024 steps, the net number of particles (electrons plus ions) 
pushed on a step is approximately N,/200+2N,/lOOO= 35,000. Comparing this 
number with the total 10,000,000 particles in the system we obtain a raw speedup 
of a factor of 286. Finally, estimating that our computer can push 3 x lo5 particles/s 
in Id, the particle-pushing part of a step should take 0.11 s. Thus, neglecting field 
solving and particle sorting, in a one hour run we might take 33,000 steps so that 
wpp t,,, = 3300. 

Of course, overhead associated with moving particles among blocks will reduce 
this speedup, as will the extra complexity of the implicit particle and field calcula- 
tions. The realities of sorting and field interpolation, and the extra difficulty of 
optimizing a multi-scale code, will lead to smaller speed enhancements than that 
calculated above. Nonetheless, it is to be expected that significant real gains will be 
achieved on truly inhomogeneous problems. 

There is considerable storage and computation overhead associated with the 
multiple source arrays, old and new, associated with the various blocks. Storage 
is less of a problem than it might seem, because the nonuniform meshes that are 
most appropriate for multiscale simulations contain far fewer grid points than 
corresponding uniform meshes capable of resolving small scale lengths. Further 
storage relief is possible because it is not really necessary to employ 2” blocks of 
particles which are advanced every 2” timesteps; one might use fewer, and simply 
delay “demotion” to larger timestep-size until the appropriate time were reached. In 
the extreme case of one block per value of m, this time level would be an integer 
multiple of 2”; however, the presence of such extremely “special” time levels might 
lead to difficulties. 

Research is needed into the computer science aspects of the technique. The re-dis- 
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tribution might be done by moving actual particle data, or by resetting pointers to 
that data. Dynamic allocation of storage might be desirable. Alternatively, one 
might not use blocks of particles at all, but merely associate a value of m, and an 
offset with each particle. Deposition would occur into an array indexed by both cell 
and this new information. A simple test at the top of the loop would inhibit 
processing of particles which were inactive on the current step. This approach 
would be simple to implement and would presere the identities of individual 
particles in a natural way for diagnostic purposes; it would probably not be efficient 
on a vector processor such as a CRAY computer, however, unless special care were 
taken. 

5. CONCLUDING REMARKS 

Particle-in-cell plasma simulation is very close to a first-principles description of 
a physical system. However, since it is necessary to employ far fewer particles than 
exist in a real plasma, the discrete-particle noise would be unacceptably large, were 
it not for the smoothing of short-range forces due to use of a field mesh, the smooth 
particle shape functions, and additional spatial filtering. Fortunately, in many real 
systems being modeled, long wavelength collective interactions generally dominate 
the physics; hence well-established techniques can be used with a high degree of 
confidence. Care is needed in choosing the simulation parameters. 

However, many systems of interest, in particular, entire plasma systems with 
large space- and time-scales, cannot be treated by explicit methods because the 
costs would be prohibitive. Implicit methods have been developed which extend the 
domain of applicability of particle-in-cell simulations to such problems. Unfor- 
tunately, implicit simulations embody far less “fundamental” descriptions than do 
explicit ones; the damped equations of motion employed are qualitatively different 
from the reversible ones generally employed in explicit particle codes. Such 
damping is often necessary in order to discard under-resolved modes from the 
simulation, so that noise associated with them does not corrupt the low-frequency 
physics being studied. Even in the absence of large timesteps, the extra “quietness” 
of damped simulations can be a real advantage. It is possible to obtain this benefit 
in explicit simulations, without the additional computational costs of an implicit 
simulation, by using an explicit damped particle mover and/or EM field propagator 
[13]. Furthermore, the amount of damping can be adjusted to the needs of the 
problem at hand, in both implicit and explicit simulations. 

As yet, implicit simulations are not so thoroughly understood as explicit ones. In 
particular, our current measures of goodness are incomplete. One criterion, energy 
conservation, provides a valuable clue to code behavior, but is not sufficient. 
Reasonable energy conservation is obtained for the expanding slab in the vicinity 
of a line in the iD parameter space of cell size and timestep size [14]. However, 
the physics captured at different points along that line is very different. At small Ax 
and At, the behavior is similar to that of an explicit code; at the other extreme of 
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large steps, almost all physics will be under-resolved. While it is possible to have 
overall energy conservation in that regime by carefully balancing dx and At, one 
must be careful not to misinterpret this as proof that one is describing the physics 
of the problem, even at long wavelengths and low frequencies. For example, when 
the cell size is significantly larger than a Debye length, finite grid instability (a mesh 
aliasing effect) can set in. There is no reason to expect aliasing problems to 
disappear as the timestep size is increased, because they are a result of the spatial 
discretization. It could well be that one obtains good energy conservation at large 
cell size by balancing imposed damping and finite-grid instability. In many 
problems this balance may be acceptable; often implicit methods are used to avoid 
short timestep constraints imposed by a region one does not care about (e.g., a 
small high-density region). However, in other problems one will be damping away 
coherent flows in phase space and replacing them with (quasi-random) ones 
induced by the grid instability, and this may be unacceptable. Conventional implicit 
simulations have been, and will continue to be, very useful, but they are relatively 
harder to use and understand than explicit simulations. 

The above considerations further motivate our efforts in developing multi-scale 
simulations. In addition to solving problems of direct physical interest, a multi-scale 
code can serve as a research tool. One can choose whether or not to resolve selected 
parts of the problem, to see whether or not such resolution is important to the 
phenomena in which one is interested. Of course, the dimensionality of the 
parameter space in a multi-scale simulation is quite large, and it is likely to be some 
time before our understanding is mature. The point here is that it is easy to do the 
experiments; the multi-scale method is in some ways less of an all-or-noting 
proposition than is a conventional implicit simulation. 

We do not yet know if an irregular mesh (or spatially-varying spatial filtering) 
is in fact a necessity for efficient multi-scale simulations. There is an underlying 
assumption that the infrequently-pushed particles see a smoothly varying field; if 
this assumption were violated, then such orbits would be inaccurate. To some 
degree the smoothly varying field will happen naturally, since the effective suscep- 
tibility x will in general be larger in regions where At is large, and, hence, the 
implicit field will be smoothed somewhat. However, it may be possible to enhance 
this smoothness by filtering in time rather than in space, or by using a spatially- 
dependent amount of damping in the equations of motion. The every-nth-step par- 
ticles might be advanced using a field which has been smoothed (on the mesh) over 
the preceding n steps, using a lag-average or some other filter; the details of this are 
unclear. In any event, it may be desirable to use either a coarse mesh or filtering 
to make it easier to ensure that infrequently-pushed particles see only smooth fields. 

Multi-scale modeling is quite open-ended. At its simplest the method can serve 
as a stable technique for electron sub-cycling, or as a technique for varying the 
timestep globally (with all particles using the same step size at any given step) as 
the configuration evolves. At the other extreme multi-scale algorithms may provide 
a natural way to advance particles on a nonuniform mesh, especially on a highly 
irregular mesh that is fitted to boundaries, is time-varying, etc. 
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An early explicit method which presages the present work has in fact employed 
a nonuniform mesh in 2D [lS]. While unable to employ a very large timestep in 
the large-cell smooth-flow region, that author was apparently successful in using 
computer resources more efficiently than could have been done using a fixed-step- 
size code. Further discussion of spatially varying meshes can be found in [16]. 

It may be possible to employ a locally implicit description, wherein the field equa- 
tion is solved implicitly only over each of a set of small overlapping subdomains. 
One does not need global implicitness, since it is not desired to use an infinite 
timestep size, and even in an electrostatic simulation “old” data at the boundary of 
a subdomain might well be good enough to serve as a boundary condition. This 
method has been successfully tested by the first author on the heat equation in 1D; 
it is indeed possible to exceed the explicit stability limiting timestep by a factor of 
several using such methods. Such methods may be necessary for implicit (or explicit 
electrostatic) simulations on loosely-coupled multiprocessing computers. 

Other ideas (some of which have been employed in the past) aim at reducing the 
noise level and increasing the efhciency of particle simulations. One such approach 
involves the introduction of a fluid component along with the particles [17]; the 
fluid may create particles or absorb them depending upon how important kinetic 
effects are at each point in space. Another approach involves using particles of 
different “weight” (e.g., associates a greater weight to slow moving “bulk” particles 
but uses fewer of them). Here too, “coalescing” or “splitting” of particles is a 
possible element (though complicated by issues such as accounting for the “energy 
of constitution” of a particle that is to be split). These ideas are in no way in 
conflict with the multi-scale concept presented here. 

The multi-scale method has recently been applied to a bounded plasma with 
encouraging results; these will be described in an upcoming paper [18]. 
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